If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2+7n-2050=0
a = 3; b = 7; c = -2050;
Δ = b2-4ac
Δ = 72-4·3·(-2050)
Δ = 24649
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{24649}=157$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-157}{2*3}=\frac{-164}{6} =-27+1/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+157}{2*3}=\frac{150}{6} =25 $
| 2×y=-21 | | 6-1(4-e)=8e-5 | | 5v-8=-63 | | 3+5x-2x=0 | | (4+x)-2x=7-5x | | 83-v=200 | | 2×x=-21 | | 2x/2+4=10 | | 3x(4x-3)(x-1)=0 | | x+11x=1200 | | -7v+44=9(v-4) | | (9-2x)+2x=10+5x | | 8.05-2.05x=x | | 8(n+2)(n+4)=1,144 | | x^2-90x+104=0 | | –20=4y | | 80x=192(17-x) | | 5+x/8=4 | | 2x^2/4+7=39 | | 192x=80(17-x) | | 5(4w-1)+1=5w+41 | | 9(v-2)=-9v+18 | | 7y+3=-38 | | 5(x+3)-2(x-1)=0 | | 10+6x+2=18 | | 2x^2-7=101 | | -2(5x+1)=-10x+4 | | 21(x-5)+2x=-55-(x-2) | | 9v+30=5v+6 | | -3(x+4)+2=5(x-3)-7x+11 | | 13x-x+5-x=12x | | 216=5(1+6b)+1 |